Abstract
Objective: This study evaluated the effectiveness of a new cold atmospheric plasma device (AmbiJet) for eradicating mature oral biofilm on titanium implant surfaces, aiming to improve decontamination methods for the treatment of peri-implant infections. Material and methods: Mature oral biofilms were grown on titanium disks placed in participants’ mouths. These disks were divided into control and plasma treatment groups. The AmbiJet device delivered plasma directly to the implant surface for 3 min per 20 mm2, utilizing the applicator nozzle and implant as electrodes. Biofilm reduction was quantified by counting colony-forming units (CFUs). Results: Cold plasma treatment rendered approximately 90% of samples bacteria-free. A > 6-log10 reduction (≈99.9999%) in bacterial load was achieved in 30% of samples, with an overall average reduction of 4.9-log10 across all treated samples. The temperature during treatment remained below 40 °C. Conclusions: Within the study’s limitations, cold atmospheric plasma effectively eradicates mature oral biofilm on titanium surfaces. This high disinfection efficacy is likely due to the combined action of reactive species and electrical phenomena, which does not cause significant temperature increases.